

Course Syllabus

[
1	Course title	Optics-1
2	Course number	0302221
2	Credit hours	3 theory
3	Contact hours (theory, practical)	3 theory
4	Prerequisites/corequisites	Practical Physics-2 (0302112)
5	Program title	BSc. In Physics
6	Program code	
7	Awarding institution	The University of Jordan
8	School	School of Science
9	Department	Department of Physics
10	Course level	2nd year
11	Year of study and semester(s)	1 st 2023/2024
12	Other department(s) involved in teaching the course	-
13	Main teaching language	English
14	Delivery method	⊠ Face to face learning □ Blended □ Fully online
15	Online platforms(s)	⊠ Moodle □ Microsoft Teams □ Skype □ Zoom □ Others
16	Issuing/Revision Date	October 2023/January 2024

17 Course Coordinator:

Name: Dr. Hanan Sa'adeh

Contact hours: Announced on the website: eacademic.ju.edu.jo/hanan.saadeh/default.aspx

Office number: Physics Building, 2nd Floor, Room 220 Phone number: 065355000 Ext. 22029

Email: <u>Hanan.Saadeh@ju.edu.jo</u>

18 Other instructors:

None

19 Course Description:

As stated in the approved study plan.

Introductory Course of Optics: Topics include: Nature of Light, Huygen's Principle, Fermat's Principle, Wave Equations, Superposition of Waves, Interference of Light, Optical Interferometry, Production of Polarized Light, Fraunhofer Diffraction, Diffraction Grating.

QF-AQAC-03.02.01

20 Course aims and outcomes:

A- Aims:

مـركـز الاعـتماد وضمان الجودة

1- Equipping the student with a set of general tools to understand basic optical phenomena and model simple optical devices.

2- Connecting theoretical concepts to real-world applications and experiments.

3- Developing an intuitive capability to research and to uncover the working principles of things that involve light.

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Quantum Mechanics, Classical Mechanics, Electrostatics and Magnetism, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.

SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.

SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.

SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.

SLO (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

Program SLOs	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO
Course SLOs		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. understand the fundamentals of geometrical and physical optics.	~								
2. describe and interpret most geometrical and physical phenomena in optics.	~	~							
3. understand basic optical systems.		\checkmark							
4. master general concepts of wave propagation that can be applied in a variety of different contexts, from acoustics to microwaves.	~	~							
5. set up equations for relevant optical phenomena and solve for relevant quantities of interest	✓	~							

21. Topic Outline and Schedule:

Week	Lectur e	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
1	1.1 1.2 1.3	Nature of Light A Brief History Particles and Photons The Electromagnetic Spectrum	1	Face to Face	Lecture room	Synchrono us	HW &/Or Quiz	Ch.1 Sec 1-3
2	2.1 2.2 2.3	Geometrical Optics Huygens' Principle Fermat's Principle Principle of Reversibility Reflection in Plane Mirrors						Ch. 2 Sec.
3	3.1 3.2 3.3	Refraction Through Plane Surfaces Imaging by an Optical System Reflection at a Spherical Surface Refraction at a	1,2,3	Face to Face	Lecture room	Synchrono us	Discussi on	1-11
4	4.1 4.2	Spherical Surface Thin Lenses Vergence and						
4	4.2 4.3							

مان الجودة	ANCE CENTER							
	5.1	Optical Instrumentation Prisms	3					
5	5.2	Wave Equations One-Dimensional	2,4					Ch.3
	5.3	Wave Equation Harmonic Waves		Face to	Lecture	Synchrono	Discussio n	Sec. 3 Ch.5
	6.1	Complex Numbers (<i>Self-Reading</i>) Harmonic Waves as Complex Functions		Face	room	uš	Exam	Sec. 1- 6, 8, 9
6	6.2	Plane Waves Spherical Waves						
	6.3	Electromagnetic Waves Light Polarization						
	7.1	Superposition of Waves						
7	7.2	Superposition Principle Superposition of						
	7.3	Waves of the Same Frequency	2,4,5	Face to	Lecture	Synchrono	Discussi	Ch. 6
	8.1	Random and Coherent Sources Standing Waves	7 7-	Face	room	us	on	Sec. 1-6
8	8.2	The Beat Phenomenon						
	8.3	Phase and Group Velocities						
	9.1	Interference of Light						
9	9.2	Two-Beam Interference Young's Double-Slit Experiment						
	9.3	Double-Slit Interference with Virtual Sources						Ch.7
	10.1	Interference in Dielectric Films Fringes of Equal Thickness	1.5	Face to	Lecture	Synchrono	Discussio n	Sec. 1-8
10	10.2	Newton's Rings Film-Thickness Measurement by	1-5	Face	room	us	Exam	
	10.3	Interference Stokes Relations Optical						
	11.1	Interferometry The Michelson						
11	11.2	Interferometer Applications of the Michelson						Ch.8
	11.3	Interferometer						Sec. 1-4

ACO	REDITATION & QUALITY ASSURE	NICE CENTER							
		12.1	Variations of the Michelson						
	12	12.2	Interferometer (Self- Reading)						
		12.3	The Fabry-Perot Interferometer (Self- Reading)						
		13.1	Fraunhofer Diffraction						
	13	13.2	13.2 Diffraction from a Single Slit						
		13.3	Beam Spreading Rectangular and						
		14.1	Circular Apertures Resolution Double-Slit					Discussi	Ch. 11
	14	14.2	Diffraction Diffraction from					on	Sec. 1-6
		14.3	Many Slits (<i>Self-</i> <i>Reading</i>)	1-5	Face to Face	Lecture room	Synchrono us	Project	
		15.1	The Diffraction					Exam	Ch. 12
	15	15.2	Grating The Grating Equation						Sec. 1-4
	15	15.2	Free Spectral Range of a Grating Dispersion of a						
		15.3	Grating Resolution of a Grating						

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
Assignment &/Or Quizzes	5	Chapter 1	1 & 2	Oct 2023	On Campus
Midterm Exam	- 30	Chapters 1-3 & 5	1 & 2	Dec 2023	On Campus
Second Exam	- 30	Chapters 6 & 7	1 & 2	January 2023	On Campus
Group Project	Project 15		1-9	Dec-Jan 2023	Elearning + On Campus
Final Exam	50	All material	1 & 2	Jan 2023	On Campus

QF-AQAC-03.02.01

Textbook, Lecture Notes, Scientific Calculator.

24 Course Policies:

A- Attendance policies:

Class attendance is expected. Past experience has shown that students who do not attend the lectures invariably receive poor grades.

A student whose absence exceeds 15% of lectures will be dismissed.

B- Absences from exams and submitting assignments on time:

Absence from exams without an acceptable excuse means ZERO.

Some homework assignments will be graded. Some problems will be selected and discussed in an extra lecture for every chapter.

C- Health and safety procedures:

No special precautions.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

All these issues will be considered according to the regulations and laws adopted at the University of Jordan.

E- Grading policy:

Homework & Quizzes: 5%

Midterm Exam: 30%

Group Project: 15%

Final Exam: 50%

F- Available university services that support achievement in the course:

Class Room, Ibn Al-Haytham Laboratory, Students Computer Lab, Library

QF-AQAC-03.02.01

25 References:

A- Required book(s), assigned reading and audio-visuals:

Introduction to Optics, 3rd Edition (2014), by F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti.

B- Recommended books, materials, and media:

1- Optics, 5th Edition (2017), by E. Hecht.

2- Schaum's outlines - Optics, by E. Hecht (McGraw-Hill).

3- Ibn Sahl Corner for Optics at PhysLAB: <u>https://www.physlab.org/optics-lab/</u>

26 Additional information:

None

Name of Course Coordinator: Dr. Hanan Sa'adeh	Signature: Date: 14/01/2024
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
-	
Head of Curriculum Committee/Faculty:	Signature:
-	
Dean:	Signature: